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Abstract 

The impact of a drop onto a liquid film is a highly relevant process which occurs in many 

technical systems and has been well studied for pure Newtonian liquids. Drop film interactions 

with non-Newtonian liquids are, however, comparatively seldom investigated, even though 

such complex fluids are used in many real applications. In this study, we investigate 

numerically the influence of non-Newtonian (shear-thinning) liquid behavior on the impact 

morphology of one- and two-component drop film interactions. The simulations are performed 

with the multiphase flow solver Free Surface 3D (FS3D), which is based on the Volume-of-

Fluid (VOF) method and which is capable of simulating shear-thinning liquids as well as 

multiple miscible liquids. Both frameworks are coupled within this study for the first time which 

enables simulations of multiple liquids which can exhibit optionally an individual shear-thinning 

behavior. We investigate the feasibility of an effective viscosity by comparing the impact 

morphology of interactions involving shear-thinning liquids to morphologies when pure 

Newtonian liquids are used. Such an approach has the potential to simplify a possible 

characterization of the impact morphology when shear-thinning liquids are involved. The 

shear-thinning behavior is modeled by using the Carreau-Yasuda model. An important 

parameter of this model is the relaxation time 𝜆 which represents the reciprocal critical strain 

rate whose exceedance marks approximately the onset of shear-thinning. We increase 𝜆 

successively in such a way that the maximum strain rate occurring at the bottom crosses this 

critical strain rate. This enables a detailed analysis of the onset of the shear thinning behavior 

during the impact and its influence on the resulting impact morphology.  
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Introduction 

The scenario of a drop that impacts onto a thin liquid film is a fundamental process which plays 

an important role in many technical systems. The resulting impact morphology, whose 

characterization is of great interest, is highly influenced by many different parameters like the 

physical properties of the involved liquids [1]. In most studies in literature about drop film 

interactions Newtonian liquids are used or assumed [1]. However, in many real applications 

like in ink-jet printing, spray painting or fuel injection in combustion engines the involved liquids 

can exhibit a non-Newtonian behavior like shear-thinning, viscoelasticity or thixotropy. The 

influence of rheological properties of such complex liquids on the impact morphology has only 

been investigated systematically in few studies due to the great experimental and numerical 

challenges [2-9].  

In this study, we investigate numerically the influence of the shear-thinning behavior on the 

resulting impact morphology of drop film interactions. In general, the modeling of the non-
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Newtonian liquid behavior with a viscosity function or with other constitutive equations 

introduces additional free parameters to the problem of investigation. These parameters 

enlarge, however, the whole parameter space tremendously, making a full characterization of 

the impact morphology in consideration of these added parameters almost unfeasible. In order 

to simplify a potential characterization, it is therefore important to know if the impact outcome 

of a drop film interaction using non-Newtonian liquids can be reproduced/modeled by using a 

pure Newtonian liquid with the same effective viscosity. Such an approach is not new as it 

was already numerically investigated by Focke and Bothe [10] for shear-thinning drop 

collisions and by Ertl [11] for drop oscillations and jet breakup. In this study, the focus lies on 

one- and also on two-component drop film interactions, also named unary and binary 

interactions in the following. The simulations are performed with our in-house multiphase 

solver Free Surface 3D (FS3D) which is capable of simulating shear-thinning liquids [10,11], 

multi-component liquids as well as drop film interactions with high accuracy [12-15]. Both 

numerical frameworks for simulating shear-thinning behavior and multi-component liquids are 

coupled within this work for the first time. This coupling enables simulations of non-Newtonian 

multi-component multiphase flows which has to the best of our knowledge never been done 

before. 

 

Numerical Method  

The multiphase flow solver FS3D solves the equations for mass and momentum conservation  

𝜕𝑡𝜌 + ∇ ∙ (𝜌𝐮) = 0,             𝜕𝑡(𝜌𝐮) + ∇ ∙ (𝜌𝐮⨂𝐮) = ∇ ∙ [𝐒 − 𝐈𝑝] + 𝜌𝐠 + 𝐟𝛾 + 𝐟∇𝛾 (1a,b) 

on finite volumes, where 𝐮 denotes the velocity vector, 𝜌 the density, 𝐒 the incompressible 

viscous stress tensor, 𝐈 the identity matrix, 𝑝 the pressure and 𝐠 the acceleration of gravity. 

The terms 𝐟𝛾 and 𝐟∇𝛾 incorporate surface tension and soluto-capillarity at the phase boundary, 

whereas the latter is only unequal to zero in case different liquids exhibiting different surface 

tensions interact with each other. The solver uses the Volume-of-Fluid (VOF) method to 

identify different phases by introducing a scalar field 

𝑓(𝐱, 𝑡) = {
0

]0,1[
1

 

outside the liquid phase, 

in interface cells, 

inside the liquid phase, 

 

(2) 

which represents the liquid volume fraction in each control volume [16]. Additional intrinsic 

averaged VOF variables 𝜓𝑖 = 𝑉𝑖 𝑉𝑙⁄  can be used optionally to distinguish between different 

liquids. These variables represent the volume fractions of species 𝑖 in the liquid volume within 

a control volume 𝑉𝑙. An ideal and linear mixing behavior without volume expansion is assumed 

between different species. For the advection of the liquid phase, the transport equations  

𝜕𝑡𝑓 + ∇ ∙ (𝑓𝑢) = 0,          𝜕𝑡(𝑓𝜓𝑖) + ∇ ∙ (𝑓𝜓𝑖𝑢) = 0, (3a,b) 

are solved simultaneously in a closely coupled way with a Strang-splitting approach [17,18]. 

The corresponding fluxes are calculated geometrically using the piece-wise linear interface 

calculation (PLIC) method to maintain a sharp interface [19]. The right-hand side of equation 

(3b) is equal to zero as the problem of investigation is strongly convection-dominated so that 

molecular diffusion between species can be neglected. The surface tension is modeled by the 

conservative continuum surface stress (CSS) model by Lafaurie et al. [20]. 

The conservation equations (1) are solved in a one-field formulation, meaning that all fluids 

are treated as a single fluid with varying physical properties. These properties 𝜑 (e.g. the 

density 𝜌) are calculated by 
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𝜑(𝐱, 𝑡) = 𝜑𝑔 + 𝑓(𝐱, 𝑡)(𝜑𝑙 − 𝜑𝑔),  (5a-b) 

where the subscripts 𝑔 and 𝑙 denote the gaseous and the liquid phase. In this work, special 

attention is given to the dynamic viscosity of the liquid 𝜇𝑙. The different implemented models 

for its calculation are summarized in the following. 

In case of a multi-component liquid flow, the mixture viscosity depends on the individual 

volume fractions of each species 𝑖, so that 𝜇𝑙 = 𝜇𝑙(𝜓𝐷 , 𝜓𝐹) in the present investigation, where 

the subscripts 𝐷 and 𝐹 denotes the liquids of the drop and film. Several mixture models are 

implemented in FS3D like for example the mole fraction based models by Bingham [21] and 

Kendall and Munroe [22] or the volume fraction based binary mixture model by Dey and 

Biswas [23]. The latter reads 

ln 𝜇𝑙 = 𝜓𝐷
2 ln 𝜇𝐷 + 𝜓𝐹

2 ln 𝜇𝐹 + 2𝜓𝐷𝜓𝐹 ln (
2𝜇𝐷𝜇𝐹
𝜇𝐷 + 𝜇𝐹

) (6) 

and is used throughout this study. The viscous stresses within flowing multi-component liquids 

could, however, only be modeled with the incompressible Newtonian stress tensor  

𝐒 = 𝜇[∇𝐮 + (∇𝐮)T] = 2𝜇𝐃 with the strain rate tensor 𝐃 so far. For simulations with a single 

one-component liquid, viscous stresses can be calculated either by using the Newtonian 

stress tensor mentioned above or by using the generalized Newtonian fluid model for purely 

viscous fluids 𝐒 = 2𝜇(𝛾̇)𝐃, where the viscosity is a function of the shear rate 𝛾̇ = √2tr𝐃2 

enabling simulations of shear-thinning and shear-thickening fluids [24]. Several viscosity 

functions are implemented in FS3D like the two-parameter Ostwald-de Waele power law 

model 𝜇(𝛾̇) = 𝐾𝛾̇𝑛−1, where the material constant 𝐾 is the flow consistency and the exponent 

𝑛 defines the behavior of the fluid [11,24-26]. Another implemented model that is widely used 

in literature is the five-parameter Carreau-Yasuda model  

𝜇(𝛾̇) = 𝜇∞ + (𝜇0 − 𝜇∞)[1 + (𝜆𝛾̇)
𝑎]
𝑛−1
𝑎 , (7) 

where 𝜇0 and 𝜇∞ denote the zero- and infinite-shear-rate viscosities, 𝑎 is a material constant 

and 𝜆 denotes the characteristic relaxation time which marks roughly the transition between 

the Newtonian and the non-Newtonian behavior [11,27-29]. 

Even though a numerical interconnection of both multi-component and non-Newtonian 

frameworks is relatively straight forward, difficulties arise when two different liquids begin to 

mix. The reason for this is that a viscosity function for 𝜇𝑙 is needed where the viscosity is a 

function of 𝜓𝑖, 𝛾̇ and other parameters like the exponent 𝑛. Since such an equation is not 

known to the authors, a generic model was constructed based on simple underlying 

assumptions to enable non-Newtonian multi-component multiphase flow simulations. 

 

A simple generic shear-rate dependent viscosity function for binary liquid mixtures 

The basis of the constructed viscosity function is the Carreau-Yasuda model (equation (7)), 

whose five parameters (𝜇0, 𝜇∞, 𝑎, 𝜆, 𝑛) are now functions of the species volume fractions 𝜓𝑖. 

The model reads 

𝜇𝑙(𝛾̇, 𝜇̃0, 𝜇̃∞, 𝜐𝑎 , 𝜐𝜆, 𝜐𝑛) = 𝜇̃∞ + (𝜇̃0 − 𝜇̃∞)[1 + (𝜐𝜆𝛾̇)
𝜐𝑎]

𝜐𝑛−1
𝜐𝑎 , (8a) 

with  

𝜇̃𝜂 = 𝜇̃𝜂(𝜓1, 𝜓2) = 𝜇1,𝜂
𝜓1
2
𝜇2,𝜂

𝜓2
2
(
2𝜇1,𝜂𝜇2,𝜂

𝜇1,𝜂 + 𝜇2,𝜂
)

2𝜓1𝜓2

, (8b) 

  



 
ILASS–Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Virtual, Israell 

4 

𝜐𝜂(𝜓1, 𝜓2) = {

𝜂1
𝜂2

𝜂1𝜓1 + 𝜓2𝜂2
 

if only liquid 1 is shear-thinning, 
if only liquid 2 is shear-thinning,  
if both liquids are shear-thinning. 

(8c) 

For a zero and infinite shear rate or for the viscosity limits, respectively, it is assumed that a 

viscosity mixture model (equation (6)) can be used to calculate the viscosity limits for a specific 

mixture composition (equation (8b)). Note that 𝜇𝑖,0 = 𝜇𝑖,∞ in case liquid 𝑖 shows pure 

Newtonian behavior. Furthermore, an assumption has to be made about the other parameters 

of this shear-thinning model for a specific mixture composition. We assume that the 

parameters remain the same but in case both liquids exhibit non-Newtonian behavior the 

resulting parameters are calculated as a weighted mean (see equation (8c)). At this point it 

should be mentioned that the actual definition of 𝜐𝜂(𝜓1, 𝜓2) (equation (8c)) had an insignificant 

effect on the resulting morphologies of the simulated impact scenarios. The reasons for this 

are that both liquids hardly mix during the interaction and that only a tiny fraction of control 

volumes with 𝑓 > 0 contain both species due to the high spatial resolution. 

 

Validation 

The numerical coupling between non-Newtonian viscosity treatment and the multi-component 

framework is validated against a derived analytical solution of a steady laminar three-layered 

plane Poiseuille flow with two different Ostwald-de Waele power law fluids (Layer A and B) 

and one Newtonian fluid (Layer C). The solution was derived following the approach of Bird 

[30] and Xenakis [31] and reads       
  

𝑢(𝑦) =

{
 
 

 
 −

𝐹𝑥(𝑦
2 − 𝐿2)

2𝜇𝐶
+ 𝑐1

(𝑦 − 𝐿)

𝜇𝐶
                        if  𝛽 ≤ 𝑦 ≤ 𝐿,     (Layer C)

𝐺(𝐵, 𝑦, 𝛽) −
𝐹𝑥(𝛽

2 − 𝐿2)

2𝜇𝐶
+ 𝑐1

(𝛽 − 𝐿)

𝜇𝐶
     if  𝛼 ≤ 𝑦 < 𝛽,     (Layer B) 

 𝐺(𝐴, 𝑦, 0)                                                           if  0 ≤ 𝑦 < 𝛼,     (Layer A)  

 (9a-c) 

with 

𝐺(𝑖, 𝜉, 𝜁) = −(
1

𝜇𝑖
)
𝑛𝑖
−1

(
𝑛𝑖

𝑛𝑖 + 1
)
(−𝐹𝑥𝜉 + 𝑐1)

𝑛𝑖
−1+1 − (−𝐹𝑥𝜁 + 𝑐1)

𝑛𝑖
−1+1

𝐹𝑥
, (9d) 

  

where 𝐹𝑥 denotes the flow driving body force, 𝐿 the channel height, 𝛼 and 𝛽 the interface 

positions between the layers, and 𝜇𝑖 and 𝑛𝑖 denote the dynamic viscosity and the power-law 

exponent of layer 𝑖. The unknown constant 𝑐1 is determined numerically with equation 

𝐺(𝐴, 𝛼, 0) = 𝐺(𝐵, 𝛼, 𝛽) + 𝑢𝐶(𝛽) by means of the Newton-Raphson method.  

Two different scenarios were simulated, in which 𝜇𝐶 = 1 mPa s and the fluid of layer A is 

treated as a shear-thinning fluid with 𝑛𝐴 = 0.6 and 𝜇𝐴 = 20 mPa s (𝐾𝐴 = 20 mPa s
0.6) in both 

cases. In the first case, the fluid in layer B is treated as a Newtonian fluid (𝜇𝐵 = 4 mPa s), 

whereas in the second case the fluid exhibit shear-thickening behavior with 𝑛𝐵 = 1.8  

(𝐾𝐵 = 4 mPa s
1.8). The other parameters are set to 𝐿 = 1 m, 𝛼 = 0.375 𝐿, 𝛽 = 0.625 𝐿,  

𝐹𝑥 = 0.1 N/m³. The resulting velocity profiles for 𝑁𝑦 = 32 grid cells per channel height 𝐿 are 

depicted in figure 1a, where the velocity is made non-dimensional by using the resulting 

averaged velocity 𝑢̅. As can be seen, the simulated velocity profiles almost coincide with the 

analytical solution which validates the numerical implementations. Figure 1b shows the mean 

relative error 𝜀 for four different grid resolutions. Even for a very coarse grid resolution with 

𝑁𝑦 = 16 the error 𝜀 is less than 2%. The results converge with first order due to the fact, that 

for the calculation of 𝛾̇ some needed face velocities are calculated as arithmetic means. All 

velocity gradients are, however, calculated by means of central differences. 
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Figure 1. (a) Comparison between the numerical result for 𝑁𝑦 = 32 and the analytical solution and (b) the 

evaluated mean relative error 𝜀 = 𝑁𝑦
−1∑ |𝑢j,num − 𝑢j,ana|/𝑢j,ana𝑗  for several grid resolutions. 

 

Setup 

The computational setup is almost identical to the one used by Steigerwald et al. [12-13] and 

is, therefore, only shortly described. A spherical drop with diameter 𝐷 = 2.5 mm is initialized 

in a distance of 2𝐷 above a liquid film of thickness ℎ = 0.5 mm within a cubic domain with 

dimension (7𝐷)³. As the impact scenario is fully symmetrical, only a quarter of the drop film 

interactions are simulated. The drop exhibits an initial velocity 𝑈 = 3.4 m/s towards the film. 

The computational domain is discretized with a Cartesian grid consisting of 512³ cells, 

whereas the impact region with dimensions (1.5𝐷)³ is discretized equidistantly with 256³ cells. 

This grid resolution is sufficient to accurately reproduce numerically the impact morphology 

[12]. Outside the impact region a stretched cell arrangement is used. A no-slip boundary 

condition is applied at the bottom and besides the two symmetry boundary conditions 

homogeneous Neumann boundary conditions are applied at all remaining sides. 

In this study, the liquid density is set to 𝜌 = 900 kg/m³ for both liquids and the surface tension 

is set to 𝜎 = 73.15N/m which results in an impact Weber number 𝑊𝑒 = 𝜌𝐷𝑈2/𝜎 = 356. 

Furthermore, four of the five parameters of the Carreau-Yasuda model remain the same 

throughout this study. These are the zero- and infinite-shear-rate viscosities  

𝜇0 = 0.050 Pas and 𝜇∞ = 0.005 Pas, the exponent 𝑛 = 0.6 and the material constant 𝑎 = 1.5. 

This leads to a minimum and maximum Reynolds number of 𝑅𝑒0 = 153 and 𝑅𝑒∞ = 1530. 

Thus, all simulated impact scenarios lie in the deposition regime with a maximum splashing 

parameter of 𝐾̅ = 𝑊𝑒0.5𝑅𝑒∞
0.25/(2164 + 7560𝛿1.78)0.625 = 0.87 with a dimensionless film 

thickness 𝛿 = ℎ/𝐷 = 0.2 [32-33]. The physical properties of the surrounding medium are set 

to those of ambient air. The parameter that is varied within this study is the relaxation time 𝜆, 

which roughly marks the transition from the Newtonian (N) to the non-Newtonian (nN)/shear-

thinning regime. The various 𝜆 are chosen in a way that 𝜇̅ ∈ {0.125, 0.25, 0.5, 0.75, 0.9} with 

𝜇̅ = (𝜇 − 𝜇∞ )/(𝜇0 − 𝜇∞) = (1 + (𝜆𝛾̇𝑚𝑎𝑥,𝑁0−𝑁0)
𝑎
)
(𝑛−1)/𝑎

, (10) 

where 𝛾̇𝑚𝑎𝑥,𝑁0−𝑁0 = 𝛾̇𝑅 = 18060s
-1 denotes the maximum occurring shear rate at the bottom 

during the unary N-N interaction with 𝜇0. The resulting viscosity functions are visualized in 

figure 2. The vertical dashed-dotted lines show the corresponding critical shear rates 

𝛾̇𝑐𝑟 = 𝜆
−1. For the unary non-Newtonian interactions (nN-nN), both drop and film liquid exhibit 

a shear-thinning behavior, whereas for the binary N-nN interactions the drop viscosity is  

𝜇𝐷 = 𝜇0 and only the film liquid exhibit a shear-thinning behavior.  

a)                                       b)                                       
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Figure 2. Viscosity functions 𝜇(𝛾̇) obtained with the Carreau-Yasuda model with 𝜇0 = 0.050 Pas, 𝜇∞ = 0.005 Pas, 
𝑛 = 0.6, 𝑎 = 1.5 for 𝜆𝜇 = 0.90, 𝜆𝜇 = 0.75, 𝜆𝜇 = 0.50, 𝜆𝜇 = 0.25 and 𝜆𝜇 = 0.125 together with the critical shear rates 𝛾̇𝑐𝑟 = 𝜆

−1. 

 

Results 

Figure 3 shows the side view of the impact morphology with the instantaneous viscosity field 

𝜇(𝐱, 𝑡) of two unary nN-nN interactions for two different times 𝑡 = 𝑡𝑈/𝐷 = 0.5 and 

𝑡 = 2.5. For 𝜆𝜇 = 0.50 (figure 3a), the local shear rates within the liquid are already high enough 

so that the viscosity 𝜇 decreases due to shear-thinning. The lowest viscosity values are  

reached during the early stages of the impact 𝑡 < 0.5 at the bottom, where the maximum shear 

stress occurs at the foot of the crown where the liquid is strongly deflected. At later times, the 

local shear rates decrease and so the influence of shear-thinning. For 𝜆𝜇 = 0.125 (figure 3b), the 

local viscosity within the crown is already close to the infinite-shear-rate viscosity at  

𝑡 = 0.5 and remains low also at later times. A comparison with the interaction with 𝜆𝜇 = 0.50 

shows that shear-thinning effects can indeed affect the shape of the crown. Besides that, the 

evaluation of all performed simulations shows that the maximum occurring shear rate at the 

bottom during the interaction 𝛾̇𝑚𝑎𝑥 can serve as a reasonable reference point to estimate the 

onset of shear-thinning influence in these interactions with 𝜆 = 𝛾̇𝑚𝑎𝑥
−1.  

 
a)                       𝑡̅ = 0.5                             𝑡̅ = 2.5 

 

  

 

 
 
 

b) 

  

 

 

Figure 3. Side views of the impact morphology of unary nN-nN interactions with instantaneous viscosity 

distribution 𝜇̅(𝐱, 𝑡) inside the liquid phase at 𝑡̅ = 0.5 and 𝑡̅ = 2.5  for a) 𝜆𝜇 = 0.50 and b) 𝜆𝜇 = 0.125. 
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a)                       𝑡̅ = 0.5                             𝑡̅ = 2.5 
 

  

 

 

 
 

 

b) 

  

 

 

Figure 4. Side views of the impact morphology of binary nN-nN interactions with instantaneous viscosity 

distribution 𝜇̅(𝐱, 𝑡) inside the liquid phase at 𝑡̅ = 0.5 and 𝑡̅ = 2.5  for a) 𝜆𝜇 = 0.50 and b) 𝜆𝜇 = 0.125. 

 

Figure 4 shows again side views of the impact morphology with the internal 𝜇 field but of binary 

N-nN interactions. The qualitative observations are identical to the unary case. In both unary 

and binary interactions the apparent viscosity of the film liquid are nearly the same for the 

individual 𝜆. However, the crown growth is reduced by the high and constant viscosity of the 

Newtonian drop liquid, as can be seen by comparing figure 4b with figure 3b.  

In the following, we evaluate the effective viscosity of all simulated interactions by comparing 

the resulting maximum non-dimensional crown heights 𝐻̅𝐶𝑅,𝑚𝑎𝑥 = 𝐻𝐶𝑅,𝑚𝑎𝑥/𝐷 with the resulting 

heights of Newtonian reference cases. For an accurate mapping, we first fit 𝐻̅𝐶𝑅,𝑚𝑎𝑥 of the 

Newtonian cases as a function of 𝜇̅ = (𝜇 − 𝜇∞ )/(𝜇0 − 𝜇∞) with 0 ≤ 𝜇̅ ≤ 1 (see figure 5a). 

Next, these cubic fitting equations are used to evaluate the effective viscosities 𝜇̅𝑒𝑓𝑓 of the 

unary nN-nN and binary N-nN interactions. The resulting 𝜇̅𝑒𝑓𝑓 are plotted in figure 5b over the 

Carreau number 𝐶𝑢 = 𝜆𝑈/𝐷. Note that the definition of the Carreau number is identical to the 

one of the Deborah number 𝐷𝑒 = 𝜆𝑈/𝐷, which is widely used in studies involving complex 

liquids and which is used to estimate the influence of an elastic behavior of the fluid on the 

flow. As we only investigate shear-thinning behavior and an elastic behavior is not modeled in 

this work, we stay with 𝐶𝑢 in order to prevent misunderstandings. Firstly, it is interesting to 

observe that  the obtained distributions 𝜇
𝑒𝑓𝑓
(𝐶𝑢), shown in figure 5b, are very similar for both 

unary and binary interactions. Besides that, both distributions exhibit a great similarity with the 

viscosity functions used for the simulations (see figure 2). Motivated by this similarity, we fitted 

both distributions with functions exhibiting the same structure as the used Carreau-Yasuda 

model which thus read 

𝜇̅𝑒𝑓𝑓 = (1 + (𝐶1𝐶𝑢)
𝐶2)(𝐶3−1)/𝐶2 , (11) 

where 𝐶1, 𝐶2, and 𝐶3 are constants. For the unary nN-nN interactions we obtain 𝐶1 = 9.36, 

𝐶2 = 1.67, 𝐶3 = 0.67 and 𝐶1 = 6.76, 𝐶2 = 1.65, 𝐶3 = 0.6 for the binary N-nN interactions. The 

small relative errors 𝜖 = 0.41% and 𝜖 = 0.65% for the unary and binary interactions confirm 

that both distributions can be fitted very well with equation (11). Both fitting equations are 

plotted in figure  5b. Furthermore, it is worth mentioning that the constants 𝐶2 and 𝐶3 are very  



 
ILASS–Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Virtual, Israell 

8 

 
Figure 5. (a) 𝐻̅𝐶𝑅,𝑚𝑎𝑥 plotted over 𝜇̅ for both unary and binary N-N interactions together with cubic fitting 

equations. The subscript 𝐹 denotes that in the binary interactions only the viscosity of the film liquid is varied; 

(b) Effective viscosity 𝜇𝑒𝑓𝑓(𝐶𝑢) together with the fitting equation (X) and the belonging constants 𝐶1 = 9.36, 𝐶2 =

1.67, 𝐶3 = 0.67 (nN-nN; unary), 𝐶1 = 6.76, 𝐶2 = 1.65, 𝐶3 = 0.6 (N-nN; binary) and 𝐶1 = 6.08, 𝐶2 = 𝑎 = 1.5, 𝐶3 =

𝑛 = 0.6 using the set parameters of the Carreau-Yasuda model. 

 

similar to the constants of the used viscosity function with 𝑎 = 1.5 and 𝑛 = 0.6, especially for 

the binary N-nN interactions. A fitting equation (11) with 𝐶1 = 6.08, 𝐶2 = 𝑎 = 1.5 and  

𝐶3 = 𝑛 = 0.6 with 𝜖 = 2.25% regarding both distributions is also plotted with a dashed line in 

figure 5b. The good agreement between the numerical results and this fitted equation, which 

has the same parameters as the used viscosity function in the simulations  raises an important 

question: Can the proposed fitting equation (11) also be used to fit numerical results in case 

other Carreau-Yasuda model parameters 𝑎 and 𝑛 are used with 𝐶2 = 𝑎 and 𝐶3 = 𝑛 and is 𝐶1 

therefore the only constant that has to be determined? If this is the case, this will greatly 

simplify the characterization of the impact morphology of both unary and binary interactions 

involving shear-thinning liquids. 

 

Conclusion 

A numerical study about the influence of a shear-thinning liquid behavior on the impact 

morphology in drop film interactions was presented. The study encompassed not only one- 

but also the first ever simulated two-component drop film interactions involving shear-thinning 

liquids. In order to enable non-Newtonian multi-component multiphase flow simulations, we 

used the in-house solver FS3D whose previous capabilities of simulating multiple 

distinguishable liquids and shear-thinning liquids were coupled. The new interconnection 

between both frameworks was validated by a comparison with an analytical solution of a three-

layered plane Poiseuille flow.  

Starting point of the presented parameter study was an impact scenario in the deposition 

regime. In several simulations, the relaxation time 𝜆, a parameter of the used Carreau-Yasuda 

model, was varied. It was shown that the maximum occurring shear rate at the wall can be 

used to estimate the onset of the influence of a shear-thinning behavior with 𝛾̇𝑚𝑎𝑥
−1 = 𝜆𝑐𝑟 and 

that a shear-thinning behavior can indeed influence the morphology of the resulting crown. In 

a next step, the concept of an effective viscosity has been tested with regard to a potential 

simplification of the morphology characterization when shear-thinning liquids are involved in 

drop film interactions. The concept was analyzed by using the maximum occurring crown 

height 𝐻̅𝐶𝑅,𝑚𝑎𝑥. The obtained distributions 𝜇(𝐶𝑢 = 𝜆𝑈/𝐷) exhibit a great similarity with the 

used viscosity function 𝜇(𝛾̇) for both unary and binary interactions and both distributions 𝜇(𝐶𝑢) 

could be fit very well with a function almost identical to the used Carreau-Yasuda model. This 

result raises the question if the impact morphology of both one- and two-component drop film 

a)                                       b)                                       
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interactions involving shear-thinning liquids can be predicted in general if an accurate 

description of the shear-thinning behavior of the used liquid and the corresponding fits of the 

Newtonian reference cases are known. If this is the case, this will greatly simplify the overall 

description of the impact morphology of such interactions. However, this hypothesis has to be 

investigated in future studies. 
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