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Abstract 

Accurate numerical simulations of multiphase flow phenomena like jet breakup or drop film 

interactions require an accurate advection of the disperse phase. A proper validation of the 

used numerical advection scheme is therefore of key importance. In order to validate these 

schemes, it is standard practice to perform advection tests in which simple geometrical objects 

are passively advected with a given solenoidal velocity field within the computational domain. 

Test results are then compared with other results from literature. For tests with a temporal 

varying velocity field, different approaches are used in literature which have in common that 

the obtained results depend on the used temporal discretization scheme of the multiphase 

flow solver. In this work, we present a methodology for performing passive advection tests 

with temporally varying solenoidal velocity fields using the Volume-of-Fluid (VOF) method 

whose results are independent of the used temporal discretization scheme. In the proposed 

methodology, the volume fluxes of the advected fluid across the faces of the grid cells are 

determined with spatial as well as temporal averaged velocities. The time step needed for the 

temporal integration of the velocity field is calculated analytically by applying the fundamental 

theorem of calculus to the underlying Courant-Friedrichs-Lewy (CFL) condition, which is 

therefore exactly fulfilled during the advection. Due to that, test results are independent of the 

temporal discretization scheme of the used solver and the temporal resolution solely depends 

on the chosen CFL-number. This promotes the compatibility of test results and can help to 

prevent a biased view on different test results from the literature in the future. The proposed 

methodology is exemplarily applied to a two-dimensional flow test often used in literature and 

its advantages are demonstrated by means of a detailed analysis of the test results. 
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Introduction 

Passive advection tests have been a widely established and effective way to test the 

capabilities of interface reconstruction methods and advection schemes of multiphase flow 

solvers for decades [1-14]. In these tests, simple geometrical objects like circles or spheres 

are passively advected with a given stationary or temporal varying solenoidal velocity field 

𝐮(x, 𝑡) by using a transport equation 
 

 
𝜕𝜒(x, 𝑡)

𝜕𝑡
+ ∇ ⋅ (𝜒(x, 𝑡)𝐮(x, 𝑡))  = 0, (1) 

 

where the phase indicator function 𝜒(x, 𝑡) marks the advected object. A common feature of 

most test cases is the periodicity through which the translated, rotated or deformed object will 

reach its initial position again after a specific amount of time. This periodicity enables a 

comparison between the advected and initialized state of the object, which then provides 

important insights into the accuracy and the conservativity of the used advection scheme. In 
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addition, test results can be used to compare different numerical solvers which may be based 

on different numerical methods.  

A popular method for advecting multiple fluids, which are separated by a sharp interface, is 

the interface-capturing Volume-of-Fluid (VOF) method by Hirt and Nichols [15]. The VOF 

method introduces the volume fraction of the reference fluid Ω per grid cell  
 

 𝑓𝐶(𝑡) =  
1

Δ𝑉𝐶
∫ 𝜒(x, 𝑡)

𝑉𝐶

d𝑉  with  𝜒(x, 𝑡) = {
1   if 𝑥 ∈ Ω at time 𝑡,
0   else,                         

 (2) 

 

as a spatial average of the phase indicator function 𝜒(x, 𝑡), where Δ𝑉𝐶 denotes the volume of 

a grid cell 𝐶. If equation (2) is inserted into equation (1) this yields after discretization, 

integration over space and time and by applying the divergence theorem 
 

 𝑓𝐶
𝑛+1 − 𝑓𝐶

𝑛 = −
1

Δ𝑉𝐶
∑ 𝐹𝑆  

𝑁𝑆

𝑆=1
 with 𝐹𝑆  = ∫ ∫𝜒(x, 𝑡)𝐮(x, 𝑡)

𝑆

⋅ ndSd𝑡
𝑡+Δ𝑡

𝑡

,  (3) 

 

where n𝑆 denotes the unit normal vector of cell face 𝑆, 𝑁𝑆 is the number of cell faces and dS 

is the infinitesimal cell face area. The volume fluxes 𝐹𝑆, which are still exact in the presented 

form and whose accurate calculation is the basis of every VOF advection scheme, have in 

general to be approximated with 𝐹𝑆 ≈ 𝑔𝑆
𝑛. The reason for this is that the unknown temporal 

evolution of the reference fluid Ω prevents the temporal integration of 𝜒(x, 𝑡) over the time 

interval [𝑡, 𝑡 + Δ𝑡]. The fluxes are therefore calculated by only using the state of the reference 

fluid at time 𝑡 or at the discrete time level 𝑡𝑛, respectively, and by using the velocity field 𝐮(x, 𝑡).  

In case a passive advection test shall be performed, the velocity field 𝐮(x, 𝑡) is known. If 𝐮 is 

stationary, the calculation of the fluxes is a simple task since the temporal averaged �̅� = 𝐮. If, 

however, the velocity field is temporally varying, the incorporation of the given velocity field 

into the solution cycle of the governing advection equation is not trivial since the necessary 

time step Δ𝑡 for the temporal integration in equation (3) is unknown. Two common approaches 

are to set Δ𝑡 either to a constant value so that Δ𝑡 satisfies initially the underlying time step 

constraint (see e.g. [9]), or to calculate Δ𝑡 adaptively throughout the simulation also by using 

a time step constraint (see e.g. [11]). In both approaches test results are, however, affected 

by the used temporal discretization scheme of the used solver which bias the results and thus 

the comparability between different solvers. Since an accurate and standardized calculation 

of the volume fluxes is, however, crucial for interpreting and comparing the sensitive results 

of passive advection tests, we present a methodology in the following how the necessary time 

step Δ𝑡 for the temporal integration in equation (3) can be obtained analytically so that test 

results become independent of the used temporal discretization scheme. 

 

Methodology 

The basis of the proposed methodology is the underlying time step constraint whose definition 

usually depends on the advection scheme as well as on the used grid. Since the focus of this 

paper is only to demonstrate the methodology, it is exemplarily shown for rectilinear grids. In 

such a case, the time step constraint is the classical Courant–Friedrichs–Lewy (CFL) 

condition, which limits the ratio of the advection distance to the size of the corresponding grid 

cell (𝑖, 𝑗, 𝑘). If this condition is applied to each dimension separately, how it is done in many 

numerical solvers, these constraints read for a three-dimensional scenario 
 

𝑎 ≥
|𝑢𝑖+1/2,𝑗,𝑘

𝑛 |Δ𝑡𝑥

𝛥𝑥𝑖
+ , 𝑎 ≥

|𝑣𝑖,𝑗+1/2,𝑘
𝑛 |Δ𝑡𝑦

𝛥𝑦𝑗
+ , 𝑎 ≥

|𝑤𝑖,𝑗,𝑘+1/2
𝑛 |Δ𝑡𝑧

𝛥𝑧𝑘
+ , (4a-c) 
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where 𝑢, 𝑣, 𝑤 denote the velocity components, 𝑎 the CFL-number, Δ𝑑𝜂
+ = min(Δ𝑑𝜂 , Δ𝑑𝜂+1) with 

dimension 𝑑 ∈ {𝑥, 𝑦, 𝑧} and cell index 𝜂, and Δ𝑡𝑑 the corresponding time steps. The global time 

step Δ𝑡 = min(Δ𝑡𝑑) for a solution cycle is usually calculated by using the velocity values after 

the previous time step 𝑡𝑛. This leads, however, to a varying effective CFL-number 𝑎 in case 

the velocity changes with time since the numerators in equations (4a-c) are only linear 

approximations. In contrast to that, the proposed methodology uses spatial as well as temporal 

averaged cell face velocities for the calculation of 𝑔𝑆
𝑛, as for example 

 

�̅�𝑆 =
1

Δ𝑡𝐴S
∫ ∫𝑢(𝑥, 𝑦, 𝑧, 𝑡)

𝑆

⋅ ndSd𝑡
𝑡𝑛+Δ𝑡

𝑡𝑛
,  (5) 

 

where the component 𝑢 of the fully known velocity field 𝐮 is integrated over the corresponding 

cell face 𝑆 with area 𝐴𝑆, over the time interval [𝑡𝑛, 𝑡𝑛 + Δ𝑡] and divided by the intervals of 

integration. Since we require that the CFL-conditions are always exactly fulfilled independent 

of the rate of change of the velocity field, the averaged velocity components are inserted into 

equations (4a-c). The subsequent determination of Δ𝑡 by using the resulting averaged CFL-

conditions is, however, not obvious due to the fact that Δ𝑡 is multiplied with temporal averaged 

velocities for which Δ𝑡 itself is used. In order to overcome this obstacle, Δ𝑡 is calculated by 

applying the fundamental theorem of calculus to the advection distances, like for example to 

|�̅�𝑖+1/2,𝑗
𝑛 |Δ𝑡 = 𝑠𝑥,𝑖+1/2,𝑗

𝑛 (Δ𝑡) (visualized in figure 1), which is treated now as a function of Δ𝑡 that 

needs to be determined. This leads to an averaged time step constraint e.g. in 𝑥-direction  
  

𝑎 =
𝑠𝑥,𝑖+1/2(Δ𝑡)

𝛥𝑥𝑖
+ =

|�̅�𝑖+1/2
𝑛 |Δ𝑡

𝛥𝑥𝑖
+ =

|∫ ∫ 𝑢(𝑥𝑖+1/2, 𝑦, 𝑡)d𝑦d𝑡
𝑦𝑗+1/2

𝑦𝑗−1/2

𝑡𝑛+Δ𝑡

𝑡𝑛 |

Δ𝑦𝑗𝛥𝑥𝑖
+ . (6) 

 

The third equality is guaranteed by the mean value theorem of integration, since we use only 

solenoidal velocity fields for a passive advection, whose components are continuous functions 

on the closed test domain and which are differentiable in the open test domain. Equation (6) 

can be solved for the desired time step Δ𝑡 after calculating the definite integral of the velocity 

component 𝑢 over the corresponding cell face and the time interval [𝑡𝑛, 𝑡𝑛 + Δ𝑡]. The analytical 

time step calculation has to be done for all cell faces within the computational domain and the 

smallest time step is set as the global time step. The corresponding temporal averaged 

velocities (see equation (5)) needed for the calculation of the approximated 𝑓-flux 𝑔𝑥,𝑖+1/2,𝑗
𝑛 =

�̅�𝑖+1/2,𝑗
𝑛 Vol/(|�̅�𝑖+1/2,𝑗

𝑛 |Δ𝑡Δ𝑦𝑗) with the advected Ω-volume Vol (see figure 1) can be calculated 

afterwards.  

 
Figure 1. Schematic representation of the 𝑓-flux 𝑔𝑥,𝑖+1/2,𝑗

𝑛  in 𝑥-direction through the cell face in case �̅�𝑖+1/2,𝑗
𝑛 > 0.  
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Numerical Example 

In the following, we present the resulting formulae for the analytical timestep calculation using 

a rectilinear grid for two very often used passive advection tests: The two-dimensional (2D) 

and three-dimensional (3D) deformation flow by LeVeque [2]. Furthermore, we compare the 

results of the 2D test with data from the literature, which will demonstrate the sensitivity of the 

results regarding the incorporation of the averaged velocities into the volume flux calculation.  
 

Setup and numerical implementation  

In the advection tests by LeVeque [2], a disk (a sphere in 3D) with  a diameter of 0.3 deforms 

under the influence of a given solenoidal velocity field within a unit square (or cubic) domain 

and shall reach its initial shape again after the period 𝑇. In the 2D case, the disk is initialized 

at (0.50, 0.75), whereas in the 3D case a sphere is initialized at (0.35, 0.35, 0.35). Since the 3D 

velocity field is an extension of the 2D velocity field, we present the formulae in the following 

in a unified manner by introducing the variable 𝑟. The variable 𝑟 specifies the dimensionality 

of the flow and has to be set to 0 for the 2D case and to 1 for the 3D case. The solenoidal 

velocity field u(x, 𝑡) is given by 
 

𝑢(𝑥, 𝑦, 𝑧, 𝑡)  =  2𝑟sin2(𝜋𝑥) sin(2𝜋𝑦) sin𝑟(2𝜋𝑧) cos(𝜋𝑡/𝑇), 
 

𝑣(𝑥, 𝑦, 𝑧, 𝑡)  =  − sin(2𝜋𝑥) sin2(𝜋𝑦) sin𝑟(2𝜋𝑧) cos(𝜋𝑡/𝑇), 
 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =  −𝑟 sin(2𝜋𝑥) sin(2𝜋𝑦) sin2(𝜋𝑧) cos(𝜋𝑡/𝑇). 

(7a-c) 

 

The velocity field changes periodically with time due to the LeVeque term cos(𝜋𝑡/𝑇) [4,8].  

The first step for determing Δ𝑡𝑎𝑛𝑎 is to calculate the spatial and temporal averaged velocity 

components �̅�, �̅�, �̅� at each cell face (see exemplarily equation (5)) by integrating equations 

(7a-c) over the cell face 𝑆, which lies in normal direction to the velocity component for the used 

rectilinear grid, and over the general time interval [𝑡𝑛 , 𝑡𝑛 + Δ𝑡]. Next, �̅�, �̅�, �̅� are inserted into 

the definitions of the CFL-condition (equations (4a-c)). The resulting equations can be solved 

analytically for the local cell time steps Δ𝑡𝑑, which read1 
 

Δ𝑡𝑑  =  
𝑇

𝜋
arcsin(𝜃𝑑) – 𝜏 + 𝜓 𝑇,          𝜏  = 𝑡𝑛  − ⌊

𝑡𝑛

𝑇
⌋  𝑇,          𝜓 = {

0     if 𝜏 < 𝑇/2
1     if 𝜏 ≥ 𝑇/2

 (8a-c) 

 

with the arcsin arguments 
 

𝜃𝑥 =
2𝑎𝜋2+𝑟𝑃𝑥(𝑖)

𝑇  |𝐶𝑦(𝑗)𝐶𝑧(𝑘)|
+ (−1)𝜓 sin(𝜋𝑡/𝑇) , 𝜃𝑦 =

21+𝑟𝑎𝜋2+𝑟𝑃𝑦(𝑗)

𝑇 |𝐶𝑥(𝑖)𝐶𝑧(𝑘)|
+ (−1)𝜓 sin(𝜋𝑡/𝑇), 

 

𝜃𝑧 =
4𝑎𝜋3𝑃𝑧(𝑘)

𝑇 |𝐶𝑥(𝑖)𝐶𝑦(𝑗)|
 + (−1)𝜓 sin(𝜋𝑡/𝑇)     if   𝑟 = 1, (9a-c) 

 

with 

𝐶𝑑(𝜂) =
cos(2𝜋𝑑𝜂−1/2) − cos(2𝜋𝑑𝜂+1/2)

Δ𝑑𝜂
,         𝑃𝑑(𝜂) =

Δ𝑑𝜂
+

sin2(𝜋𝑑𝜂+1/2)
.              (10)    

 

The desired global time step Δ𝑡𝑎𝑛𝑎, which exactly fulfills the global time step contraint, is 

obtained by taking the minimum of all analytically calculated cell time steps Δ𝑡𝑎𝑛𝑎 = min(Δ𝑡𝑑). 

Finally, the averaged velocities �̅�, �̅�, �̅� needed for the 𝑓-fluxes 𝑔𝑆
𝑛 can be calculated by using 

the evaluated Δ𝑡𝑎𝑛𝑎.   

For a proper implementation of the Δ𝑡𝑎𝑛𝑎 calculation, special care has to be taken in situations, 

                                                           
1 The mathematical operator ⌊ 𝑥 ⌋ = max{𝑛 ∈ ℤ|𝑛 < 𝑥} denotes the floor function with 𝑥 ∈ ℝ. 
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in which velocities or their derivatives change their sign because the arcsin arguments 𝜃𝑑 are 

only specified in the domain [−1,1]. There are two possibilities to handle such situations. One 

possibility is to choose Δ𝑡𝑎𝑛𝑎 in such a way, that 𝑡𝑛+1 = 𝑇/2 or an integer multiple of 𝑇/2, 

dependent of the current state of the test. In this way, it is not only possible to visualize the 

advected object exactly at the point in time of its maximum (or minimum) deformation, but also 

to evaluate the error exactly at 𝑇/2 or at various integer multiples of 𝑇/2. Note that this leads 

to a change of the effective CFL-number 𝑎 for these specific time steps. The other possibility 

in the present case is to take advantage of the periodic character of the time dependence of 

u(x, 𝑡) (here LeVeque's cosine term). If the velocities or their derivatives change their sign, 

one can again determine Δ𝑡𝑎𝑛𝑎 in a way, that 𝑡𝑛+1 = 𝑇/2 or an integer multiple of 𝑇/2 and 

additionally, 𝑡𝑛 is set to 𝑡𝑛𝑒𝑤
𝑛 = 𝑡𝑛 + 2Δ𝑡𝑎𝑛𝑎. The calculation of Δ𝑡𝑎𝑛𝑎 has to be repeated 

afterwards, but now with 𝑡𝑛𝑒𝑤
𝑛  instead of 𝑡𝑛. The advantage of this treatment is that the effective 

CFL-number 𝑎 remains constant and that the number of solution cycles to perform the test is 

minimized. However, the state of deformation cannot be analyzed at specific instants in time 

anymore, which is a fundamental reason for performing passive advection tests.  
 

Results 

The implementation is tested with Free Surface (FS3D), a solver originally developed by 

Rieber [16], with a 3D variant of the split advection scheme by Rider and Kothe [4] (RK3D) 

and with the interface reconstruction method by Youngs [17]. All tests were performed with 

the variant which writes out the 𝑓-field at 𝑡̅ = 𝑡/𝑇 = 0.5 and 𝑡̅ = 1 via an additional time step. 

Figure 2 shows the reconstructed interface for three Cartesian grids with 𝑁𝑑 = 64, 𝑁𝑑 = 128, 

and 𝑁𝑑 = 256, where 𝑁𝑑 denotes the number of grid cells per dimension 𝑑, for 𝑎 = 1.0 and 

𝑇 = 8 at the time of maximum disk deformation (𝑡̅ = 𝑡/𝑇 = 0.5) and at 𝑡̅ = 1, when the disk 

should theoretically be in its initial position again. In addition, the results are plotted over a 

reference solution (𝑁𝑑 = 1024) for comparison. During the phase of ongoing spiral 

deformation of the disk, the tail of the spiral thins. At low grid resolutions, its thickness falls 

short of the minimum thickness under which different sides of the spiral begin to influence 

each other during the interface reconstruction. This leads to numerical breakup during the 

deformation which subsequently affects the final form of the disk at 𝑡̅ = 1. When the grid 

resolution is refined, the amount of breakups decreases till they finally no longer occur.  

In order to evaluate the quality of the object under investigation (for example the advection 

scheme or the interface reconstruction method), the deviation of the interface at 𝑡̅ > 0 to its 

initial position at 𝑡̅ = 0 is quantified by means of an error norm. In this study, we use the 𝐿1  

norm in a discrete form, which is defined as  
 

   𝐿1(𝑡̅)  =   ∑ |𝑓(𝑡̅)𝑖,𝑗,𝑘 − 𝑓(0)𝑖,𝑗,𝑘|  Δ𝑉𝑖,𝑗,𝑘

𝑁𝑑

𝑖,𝑗,𝑘
,   (11) 

 

Other error norms for evaluating passive advection tests can be found e.g. in [13]. Figure 3a 

shows the temporal development of the 𝐿1 error with a close-up at around 𝑡̅ = 1 for 𝑁𝑑 = 64 

and for several 𝑎 ∈  [0.1,1]. In order to highlight the effect of the proposed methodology, the 

results are compared with results when a standard temporal discretization scheme (explicit 

Euler method) is used for the passive advection. As can be seen, the minimum error 𝐿1,𝑚𝑖𝑛 

decreases when 𝑎 increases for both approaches due to the fact, that 𝐿1,𝑚𝑖𝑛 is proportional to 

the total amount of interface reconstructions [8]. The use of the explicit Euler scheme leads 

additionally to a temporal shift of 𝐿1,𝑚𝑖𝑛 due to the transition error inherent to a temporal 

discretization scheme. Note that for higher order schemes the temporal shift will be smaller. 
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(a) 𝑁𝑑 = 64 (b) 𝑁𝑑 = 128 (c) 𝑁𝑑 = 256 

  

Figure 2. Reconstructed interface (black) at 𝑡̅ = 𝑡/𝑇 = 0.5 and 𝑡̅ = 1.0 for the 2D deformation flow test by 

LeVeque [2] for several grid resolutions in comparison to a reference solution (𝑁𝑑 = 1024). 
 

 

 
(a) 

 

  
(b)          (c) 

 
Figure 3. a) Temporal development of the 𝐿1 error for the 2D deformation flow test with 𝑁𝑑 = 64 for CFL-numbers 

𝑎 from 0.1 to 1.0 in 0.1 steps. The close up on the right-hand side shows the corresponding minimum errors 

𝐿1,𝑚𝑖𝑛. The black lines belong to the results with 𝑎 ∈ {0.1, 0.5, 1.0}. b) Temporal evolution of 𝐿1 and 𝐿1,𝑚𝑖𝑛 for 

𝑁𝑑 = 64, 𝑁𝑑 = 128, and 𝑁𝑑 = 256 for the proposed methodology and when the temporal discretization scheme 

is used. c) Temporal evolution of the effective CFL-number 𝑎 for the proposed methodology and when averaged 

velocities for the flux calculation are used but with the traditional determined time step Δ𝑡𝐶𝐹𝐿. 
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The shift can be decreased by decreasing 𝑎, however, at the expense of 𝐿1,𝑚𝑖𝑛. Note, that an 

evaluation of 𝐿1,𝑚𝑖𝑛 at 𝑡̅ = 1 would lead to a significant overestimation of the error in this case. 

In contrast to the used temporal discretization scheme, a temporal shift does not occur in the 

present case when the proposed methodology is used. The minimum error 𝐿1,𝑚𝑖𝑛 is reached 

at the desired point in time at 𝑡̅ = 1 regardless of the chosen CFL-number 𝑎. This is also the 

case for other grid resolutions as depicted in figure 3b. Nevertheless, it has to be mentioned, 

that it is not guaranteed that 𝐿1,𝑚𝑖𝑛 is exactly reached at 𝑡̅ = 1. In case the advected object 

disintegrates to a large extent during the advection, further effects like numerical surface 

tension2 may affect the overall shape which can lead to a slight temporal shift of 𝐿1,𝑚𝑖𝑛. For 

the sake of completeness, figure 3c shows the temporal development of the effective global 

CFL-number 𝑎 when the proposed methodology is used and when averaged velocities with a 

traditionally calculated Δ𝑡𝐶𝐹𝐿 by means of the CFL-condition are used for the calculation of 𝐹𝑆. 

In case the time step is calculated analytically, the CFL-number 𝑎 remains always constant, 

except in situations when the velocities or their derivatives change their sign, as discussed 

above. In contrast to that, the use of Δ𝑡𝐶𝐹𝐿 leads to a varying 𝑎, whereby the deviation from 

the prescribed 𝑎 depends only on the rate of change of the given velocity field at the 

considered point in time. In the present case, this can even lead to an unacceptable violation 

of the CFL-condition, since situations with 𝑎 > 1 occur.  

To facilitate the interpretation of the test results, table 1 shows the obtained errors and results 

from literature for comparison, which were obtained with various advection schemes and 

interface reconstruction methods. Besides the 𝐿1 error for various grid resolutions, table 1 

shows also the corresponding order of convergence 𝒪(𝑁𝑑) =  ln(𝐿1(2𝑁𝑑)/𝐿1(𝑁𝑑)) /ln(1/2). 

Our results show a strong influence of the used test methodology on the test results. The 

proposed methodology leads to a significant reduction of the 𝐿1 error and to an increase of 

𝒪(𝑁𝑑) with increasing grid resolution in comparison to the case when a standard temporal 

discretization scheme is used. When the results are compared with data from the literature 

obtained with a similar advection and interface reconstruction scheme, one can see that FS3D 

performs well. A general assessment of the accuracy of the used solver in comparison to the 

other ones remains, however, difficult because only in few of the mentioned studies the used 

test methodology was described. Without using the same test methodology, a direct 

comparison can lead to a biased view of the solvers and their advection accuracy. A 

standardized methodology which excludes influences of temporal discretization schemes 

would thus help to further improve the comparability between different multiphase solvers.  

 
Table 1 - 𝐿1 errors and corresponding order of convergence 𝒪 for 2D deformation flow test with 𝑎 = 1 and 𝑇 = 8.  

Method 𝐿1(64) 𝒪(64) 𝐿1(128) 𝒪(128) 𝐿1(256) 

RK/Puckett  [4] 6.96 × 10−3 2.27 1.44 × 10−3 - - 

Stream/Youngs [5] 1.00 × 10−2 2.22 2.16 × 10−3 - - 

Hybrid markers-VOF [6] 2.78 × 10−3 2.54 4.78 × 10−4 2.04 1.16 × 10−4 

EMFPA/Puckett [7] 6.58 × 10−3 2.62 1.07 × 10−3 2.19 2.35 × 10−4 

PCFSC Unsplit/Youngs [8] 7.25 × 10−4 1.66 2.29 × 10−4 - - 

Multilevel VOF/ELVIRA [9] - - 1.61 × 10−3 2.46 2.92 × 10−4 

CCU [10] 4.58 × 10−3 2.20 1.00 × 10−3 2.59 1.78 × 10−4 

EMFPA-3D [12] 1.04 × 10−2 2.95 1.34 × 10−3 1.94 3.49 × 10−4 

UFVFC-Swartz [13] 5.74 × 10−3 1.98 1.45 × 10−3 1.95 3.77 × 10−4 

CLSVOF [14] 1.11 × 10−2 2.48 1.99 × 10−3 1.93 5.23 × 10−4 

RK3D Split SI/Youngs (Euler) 𝟒. 𝟑𝟓 ×  𝟏𝟎−𝟑 1.43 𝟏. 𝟔𝟏 ×  𝟏𝟎−𝟑 1.25 𝟔. 𝟕𝟗 × 𝟏𝟎−𝟒 

RK3D Split SI/Youngs (�̅�𝚫𝒕𝒂𝒏𝒂) 𝟒. 𝟔𝟑 ×  𝟏𝟎−𝟑 1.77 𝟏. 𝟑𝟓 ×  𝟏𝟎−𝟑 1.81 𝟑. 𝟖𝟓 × 𝟏𝟎−𝟒 

                                                           
2 "Numerical surface tension" in context of multiphase simulations with the VOF-method describes the phenomenon 

that sharp corners are rounded off due to the stencil-based interface reconstruction, which mimics surface tension. 



 
ILASS–Europe 2022, 31th Conference on Liquid Atomization and Spray Systems, 6-8 September 2022, Virtual, Israell 

 

8 

Conclusions 

A methodology for performing passive advection tests for solenoidal and temporal varying 

velocity fields using the VOF method has been presented. In the proposed methodology the 

time step for each solution cycle of the advection equation is calculated adaptively and 

analytically by applying the fundamental theorem of calculus to the underlying time step 

constraint. The analytical time step Δ𝑡𝑎𝑛𝑎 is then used to calculate exact spatial and temporal 

averaged velocities for the approximated 𝑓-fluxes 𝑔𝑆
𝑛 across the faces of the grid cells. The 

methodology was applied to two very often used passive advection tests and the resulting 

formulae were given for a rectilinear grid. The methodology can, however, also simply be 

applied to other time step constraints like e.g. to the one proposed by Weymouth and Yue [18] 

and it can easily been extended also for unstructured grids. A detailed evaluation of the results 

for the 2D deformation flow test shows the superiority of the proposed methodology in 

comparison to the usage of a standard discretization scheme (explicit Euler), where Δ𝑡 is 

calculated in a standard way using velocities from 𝑡𝑛. The use of Δ𝑡𝑎𝑛𝑎 leads to a smaller 

𝐿1,𝑚𝑖𝑛 error and its temporal shift due to the transition error inherent to a temporal discretization 

scheme vanishes. The biggest advantage is that the results become independent of a 

temporal discretization scheme since the choice of 𝑎, which now remains constant throughout 

the advection, determines the total number of solution cycles for completing the test. This 

promotes the comparability of different advection and interface reconstruction schemes and 

can help to prevent a biased view and misinterpretations of test results in the future.  

For arbitrary solenoidal velocity fields it might be, however, not possible to calculate Δ𝑡𝑎𝑛𝑎 in 

case the time dependence is more complicated. In such a situation, Δ𝑡 could also be 

determined semi-analytically by solving the definitions of the CFL-condition with the 

corresponding averaged velocities at the cell faces iteratively. Furthermore, we assume that 

an adaption of this methodology to advection schemes in which volume fluxes are not 

calculated with face averaged velocities should also be possible. This will be, however, 

investigated in future studies. 
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