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Abstract
A study of axisymmetric shape oscillations of a viscoelastic drop in a vacuum using the method
of weakly nonlinear analysis is conducted. The work is carried out due to the relevance of
the analysis for transport processes across the drop surface and due to fundamental interest.
The Oldroyd-B model is used for the characterization of the rheological liquid behaviour. The
method applied yields a set of governing equations, boundary and initial conditions for different
orders of approximation. In the present paper, the first-order equations and solutions with the
characteristic equation for the viscoelastic drop are presented. The characteristic equation
yields an infinite number of roots [5], which determine the time dependency in the higher-order
solutions. The number of selected roots defines the number of initial conditions needed for the
corresponding order of approximation. The solutions of the characteristic equation are selected
according to experiments conducted on an acoustically levitated drop. Experimental data are
obtained by measuring damping factor and oscillation frequency based on free damped shape
oscillations of viscoelastic aqueous polymer solution drops.
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Introduction
For more than 140 years, shape oscillations of drops have been a subject of scientific investiga-
tions for fundamental interest and for their relevance for transport processes. The drop surface
deformations against the spherical state raise the surface area and induce motions inside and
outside the liquid drop. The interaction with the ambient gas phase influences gradients of
velocity, temperature and species concentration, which determine the transport of momentum,
heat and mass across the drop surface. In the appendix to his paper on the capillary phe-
nomena of jets [12], Rayleigh presented an analysis of linear shape oscillations of an inviscid
drop in a vacuum around a spherical equilibrium state. One result is the equation for the an-
gular frequency of oscillation of the drop deformed according to a mode m assuming natural
values m = 2, 3, 4, . . . , which count the number of lobes along the drop surface. In [7, 8], Lamb
generalised Rayleigh’s result by accounting for the drop viscosity and the density of the ambi-
ent medium. The threshold Ohnesorge number Oh = µ/(σaρ)1/2 of the drop for the onset of
aperiodic motion was proposed.
Chandrasekhar developed the characteristic equation analysing small shape oscillations of a
viscous, self-gravitating globe in a vacuum [4]. In [10], the analysis of linear drop shape oscil-
lations was further generalised by account for both the viscous and the inertial influences from
the ambient medium hosting the viscous oscillating drop. Prosperetti studied the important as-
pect of initiation of the oscillations. In his paper [11], he analysed the drop shape oscillations as
the solution of an initial-value problem and showed that the normal-mode approach may miss
the fact that, in a range of Ohnesorge numbers, oscillations starting aperiodically may turn into
periodic with ongoing time. The most important results from the here cited highlight papers are
the angular frequency and damping rate of the oscillations, and the time-dependent shapes of
the oscillating drops.
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First computational investigations of nonlinear drop shape oscillations with large amplitudes are
due to [6] and [1]. Both Foote and Alonso used the marker-and-cell finite-difference technique
for numerically simulating the time-dependent free-surface flows with weak influence from the
liquid viscosity. First experimental studies of large-amplitude shape oscillations of drops in an
immiscible host liquid and of levitated free liquid drops in air are due to [16], who showed the
frequency decrease with increasing drop deformation and an asymmetry of the times spent in
the prolate and oblate shapes of the two-lobed oscillation mode [17]. One of the first analyses of
small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity
is [5]. Asymptotic analyses in the low- and high-viscosity limits and for low, moderate and large
elasticities are performed. They established the characteristic equation for a viscoelastic drop
and found that the equation gives an infinite number of roots, depending critically on the values
of the relaxation and retardation times, as well as the surface tension.
The aim of the work in progress reported here is to extend the above investigations to a nonlin-
ear description of shape oscillations of a viscoelastic drop. We report the theoretical approach
which is analogous to the recently published weakly nonlinear stability analysis of a Newtonian
liquid drop [18]. The present paper shows the method used for solving the characteristic equa-
tion and properly accounting for the solutions. A combination with experiments on an individual
acoustically levitated oscillating drop is the key. In these experiments, an individual drop of the
test liquid is positioned in the pressure field of the acoustic levitator. Modulation of the sound
pressure drives the drop to shape oscillations of a given mode, for which damping factor and
oscillation frequency are measured.

Theory - formulation of the problem
Nonlinear shape oscillations of a viscoelastic liquid drop are studied. The drop shapes, as
sketched in figure 1, are axisymmetric, and the motion is represented in spherical coordinates to
account for the geometry. The liquid is treated as incompressible, and its viscoelastic behaviour
upon rates of deformation is represented by the Oldroyd-B model. Analysing the drop motion
in a vacuum, the dynamic influence from an ambient medium is neglected. Body forces are not
accounted for, since the Froude number is large.
The equations of motion with their initial and boundary conditions are non-dimensionalized with
the undeformed drop radius a, the capillary time scale (ρa3/σ)1/2, the capillary pressure σ/a
and the viscous stress µ0(σ/ρa3)1/2 for length, time, pressure and extra stress, respectively.
Here, ρ is the liquid density, σ the vacuum-liquid interfacial tension and µ0 the zero-shear vis-
cosity of the drop liquid. The drop surface is described as the place where rs(θ, t) = 1 + η(θ, t),
with the non-dimensional deformation η against the undisturbed spherical shape (cf. Figure 1).
For the problem at hand, the equation of continuity and the two components of the momentum
equation in the radial and polar angular directions, (r) and (θ), read
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where Oh0 = µ0/(σaρ)1/2 is the Ohnesorge number, the characteristic dimensionless param-
eter measuring viscosity influences. The viscoelastic liquid material is characterised by the
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nondimensional rheological constitutive equation (RCE) of the Oldroyd-B fluid

τττ +De1
O
τττ = 2

(
DDD +De2

O
DDD

)
, (4)

Figure 1. Geometry of a liquid drop
under deformation at mode 2 [17].

where τττ and DDD are the extra-stress and rate-of-deformation
tensors, respectively, the latter defined with the velocity gradi-
ent tensor ~∇~v as

DDD =
1

2

(
~∇~v + ~∇~vT

)
. (5)

The Deborah numbers De1 = λ1(σ/ρa3)1/2 and De2 =
λ2(σ/ρa3)1/2 represent the nondimensional stress relaxation
and deformation retardation times of the liquid, respectively.

The upper-convected derivative
O
AAA of a tensor AAA is given as

O
AAA =

dAAA

dt
− ~∇~v ·AAA−AAA · ~∇~vT , (6)

where dAAA/dt is the material derivative.
The above set of equations is solved subject to initial and
boundary conditions. The kinematic boundary condition states
that the material rate of deformation of the drop surface equals
the radial velocity component at the place of the deformed sur-
face, i.e.,

ur =
dη
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=
∂η
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+
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at r = 1 + η. (7)

The first dynamic boundary condition states that the shear stress at the drop surface is zero,
since we assume that, in a vacuum, the dynamic viscosity is negligible, so that momentum
cannot be transferred across the drop boundary at an appreciable rate. The second dynamic
boundary condition states that the stress normal to the drop surface, composed from the flow-
induced pressure and the viscoelastic normal stress, differs across the interface by the stress
due to the surface tension. The zero-shear stress boundary condition reads

(~n · τ)× ~n = ~0 at r = 1 + η, (8)

where the outward unit normal vector ~n is given as

~n =
1

|~∇F |
~∇F with F = r − 1− η(t, θ) = 0, (9)

and the extra stress tensor in (8) is the one for the incompressible Oldroyd-B fluid. The corre-
sponding normal stress boundary condition reads
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= 0 at r = 1 + η. (10)

We obtain the divergence of the normal unit vector on the drop surface in this equation as

(
~∇ · ~n

)
=

1

r

2 + 3

(
1

r

∂η

∂θ

)2

[
1 +

(
1

r

∂η

∂θ

)2
]3/2

− 1

r2 sin θ

∂

∂θ


∂η
∂θ(

1 +
(

1
r
∂η
∂θ

)2
)1/2

sin θ

 at r = 1 + η. (11)

For analyzing these equations in a weakly nonlinear form, the two velocity components, the
pressure and the extra stress tensor in the flow field, as well as the deformed interface shape,
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are expanded in power series with respect to a small deformation parameter η0. We therefore
formulate the expansions of the flow field properties, for example ur and p, as

ur = ur1η0 + ur2η
2
0 + ur3η

3
0 . . . , (12)

p = p0 + p1η0 + p2η
2
0 + p3η

3
0 . . . , (13)

where η, τττ andDDD are expanded in the same manner as ur. The deformation parameter η0 must
be small for convergence of these series expansions. The boundary conditions are satisfied on
the deformed drop surface using Taylor expansions, such as, for example for ur,
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∂ur
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∣∣∣∣
r=1

η + . . . , (14)

where p and τττ are expanded in the same manner. Substituting these approaches into the
equations of motion (1) - (3), into the RCE (4) and into the boundary conditions (7), (8) and
(10), and representing the flow properties and their derivatives as given in (12) through (14), we
obtain sets of first-, second- and third-order equations of motion, with the boundary conditions,
consisting of all the terms with the deformation parameter η0 to the first, second and third
powers, respectively [17, 18].
The drop motion is induced by an initially imposed surface deformation against the spherical
shape. The initial deformation is governed by a Legendre polynomial of degree m with the
amplitude η0, and the surface is taken to be at rest initially. Calculation of the volume of the
deformed drop leads to the expression
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for the initial non-dimensional drop shape. The factor in front of η0 to the respective power is the
term for the corresponding order of approximation needed that the surface shape represents
the correct drop volume. Moreover, for the development of the solutions of the problem of
drop shape oscillations, the angular frequencies corresponding to the oscillation modes zero
and one are required, which, in contrast to all the other modes, do not follow as a solution
of the characteristic equation of the drop. To overcome this problem, use will be made of the
requirement that the centre of mass of the drop remains at its initial position
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at all times. Physically, this is justified because there is no resultant force making the drop move
[18]. Due to limitation in the paper length and interest in the first-order equations and solutions,
the higher orders of approximation will be presented elsewhere [19].

First-order equations
To obtain the first-order equations with their boundary and initial conditions, the above series
expansions are introduced into the respective equations, and all the terms with the parameter
η0 to the first power are collected. The first-order continuity and momentum equations read
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The RCE of first order becomes
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As the boundary conditions of first order, to be satisfied at r = 1, we obtain
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respectively. Furthermore, the initial conditions of first order are

η1(θ, 0) = Pm(cos θ) ,
∂η1

∂t
(θ, 0) = 0 . (22)

The first initial condition determines the initial shape of the deformed drop, which is given by a
Legendre polynomial of order m, and the second one states that the drop surface is initially at
rest. We have thus completed the first-order equations and conditions, and therefore we can
proceed with the derivation of the solution, which is shown in the following subsection.

First-order solutions
The first-order equations describe the linear problem. Since only two-dimensional flow fields
are investigated, we apply the method of the Stokesian streamfunction for determining the first-
order velocity and pressure fields [18]. The streamfunction ψ(r, θ, t) is defined by its relations
to the two velocity components ur1 and uθ1 as [3]

ur1 = − 1

r2 sin θ
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These first-order velocity components satisfy the continuity equation identically.
The first-order drop surface deformation is governed by the Legendre polynomial of the initial
deformation. The shape is therefore sought in the form

η1(θ, t) = η̂1Pm(cos θ)e−αmt , (24)

with the first-order initial surface amplitude η̂1 and the first-order complex angular frequency αm
for the deformation mode m.
For finding the first-order solutions of the equations of motion, we first solve the RCE of first
order. Given the exponential dependency of all the flow field variables on time via exp(−αmt),
we find for the extra-stress tensor of first order

τττ1 = 2
1−De2αm
1−De1αm

DDD1 =: 2β1DDD1 . (25)

This means that, at first order, the extra-stress tensor of the viscoelastic fluid differs from the
Newtonian material just by a frequency-dependent factor β1 in front of the rate-of-deformation
tensor. This fluid is therefore formally identical to a Newtonian one, so that all the first-order
results obtained in our previous paper [18] apply here, just with the Ohnesorge number Oh
in those equations replaced by Ohv := β1Oh0. We therefore apply those previous results as
follows.
Taking the curl of the first-order momentum equation in a vectorial form using equations (18)
and (19), we obtain the fourth-order partial differential equation(
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which is the operator for the streamfunction [3]. The resulting streamfunction ψ consists of two
contributions ψ1 + ψ2 [15] represented by the proportionalities

ψ1 = C1mr
m+1 sin2 θP ′m(cos θ)e−αmt and ψ2 = C2mqrjm(qr) sin2 θP ′m(cos θ)e−αmt , (27)

where P ′m(cos θ) is the first-order derivative of the Legendre polynomial Pm with respect to its
argument and jm is a spherical Bessel function of the first kind and order m. In its argument
we have defined q =

√
αm/Ohv. The radial and angular components of the first-order velocity

vector follow as derivatives of the stream function
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respectively. The two integration constants C1m and C2m are determined by the first-order
kinematic and zero shear stress boundary conditions and read
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The first-order pressure field is obtained by integration of one component of the momentum
equation as

p1 = −C1m(m+ 1)αmr
mPm(cos θ)e−αmt . (31)

With the velocity and pressure fields known, the zero normal stress boundary condition of first
order (21) yields the characteristic equation of the drop, which reads

α2
m,0

α2
m

=
2(m2 − 1)

q2 − 2qjm+1/jm
− 1 +

2m(m− 1)

q2

[
1 +

2(m+ 1)jm+1/jm
2jm+1/jm − q

]
, (32)

This equation determines the complex angular frequency αm, where we have denoted αm,0 =

[m(m−1)(m+2)]1/2. The spherical Bessel functions are taken at the value q of their arguments.
The equation is identical to the results from [2] and [5]. In the next section, we analyze solutions
of the characteristic equation and compare them with experimental data.

Results of the Characteristic Equation and Discussion
There is an infinite manifold of solutions of the characteristic equation of a viscoelastic drop for
a given range of Ohnesorge numbers and fixed Deborah numbers [2, 5]. We use aqueous solu-
tions of the polyacrylamide Praestol 2500 and measure droplet oscillations using an ultrasonic
resonator for levitating single drops [2]. Measured liquid drop properties for different solute
mass fractions (SMF) are given in table 1. Due to the small solute contents, the density ρ for all
solute mass factions equals 1000 kg/m3. We use measured surface tension σ, droplet radius
a, stress relaxation time λ1 and deformation retardation time λ2 from table 1 and the density
to compute the Deborah numbers. For the SMF of 0.1 wt% and 0.5 wt%, the values of De1

Table 1. Measured properties of the aqueous Praestol 2500 solutions and measured drop radius.

SMF [wt%] µ0 [Pa s] λ1 [s] λ2 [s] σ [N/m] a [m]
0.1 0.017 0.033 0.396 · 10−4 0.072 1.067 · 10−3

0.5 0.35 0.14 0.189 · 10−3 0.074 1.08 · 10−3
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Figure 2. Solutions of the characteristic equation for polymer mass factions of 0.1 wt% (a and b) and 0.5 wt% (c and d), varying
the Ohnesorge number. a) and c) - imaginary and b) and d) - real part of the nondimensional frequency Ω2.

are 8.03 and 33.93, respectively. The values of De2 are represented by the ratios of Deborah
numbers in figure 2. The solutions of the characteristic equation are defined as nondimensional
complex angular frequencies Ωm, which are ratios of αm and αm,0. The imaginary and the real
parts of the complex angular frequency present the frequency and the damping rate of the drop
shape oscillation, respectively. They are shown in figure 2 for the fundamental initial deforma-
tion mode, the range of Ohnesorge numbers between 0.03 and 3, and SMF of 0.1 and 0.5 wt%.
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               - Exp. data
 0.5 wt% - 1st order.
               - Exp. data

Figure 3. The trace of the drop north pole in time obtained from
the linear solution and experimental data.

The solutions are shown with dashed lines.
There is an infinite number of curves for
the fixed Deborah numbers and the range
of Ohnesorge numbers, but in figure 2 we
show only the first five. Since the charac-
teristic equation yields an infinite number of
roots for fixed Deborah numbers, one must
select solutions appropriate for representing
the shape oscillations. We compare the so-
lutions with experimental results. For the 0.1
wt% and 0.5 wt% aqueous Praestol 2500 so-
lution drops in table 1, the measured frequen-
cies are f = 114.49 Hz and f = 113.12
Hz, respectively, and the damping rates are
α2,r = 35.16 s−1 and α2,r = 51.02 s−1, re-
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spectively. Therefore the complex angular frequencies α∗2 = α2,r + i2πf are known. The mea-
sured nondimensional complex angular frequency Ω2 one formulates as α∗2/α

∗
2,0, where α∗2,0 is

the dimensional Rayleigh frequency. The results with the corresponding Ohnesorge numbers
are shown by the black squares in figure 2. The comparison yields perfect agreement between
the measured and the calculated (pink dashed line) nondimensional complex angular frequen-
cies. For drops with differentOh0, but the samem = 2 andDe2/De1, therefore, the values of Ω2

can be taken from those lines. Figure 3 shows traces of the drop north pole obtained from the
experiments and linear solutions using the first-order surface deformation (24). Frequency and
damping rate of the linear solutions are known from the complex conjugate angular frequency
for the corresponding liquid. The surface deformation amplitudes and phase angles are cho-
sen according to the experimental data at t = 0. Length and time scale for the experimental
data are nondimensionalized with the droplet radius and capillarity time scale, respectively. The
theoretical and experimental data agree very well.

Conclusions
We derive the first-order solution with the characteristic equation for viscoelastic Oldroyd-B drop
shape oscillations for use in the weakly nonlinear analysis. The characteristic equation yields
an infinite number of solutions for the complex angular oscillation frequency. The appropriate
solutions are selected according to experimental data for defining time dependencies in the
higher-order solutions and the number of initial conditions in the analysis. The solutions of
the characteristic equation agree well with the experimental data from damped drop shape
oscillations of aqueous Praestol 2500 solution drops in an acoustic levitator. Since we select
only one complex conjugate solution, the derivations of the second- and third-order equations
and conditions together with their solutions are similar to the Newtonian case in [18].
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