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Abstract
In the present paper, it is proposed to use kernel regression to map the Lagrangian droplet data,
droplet number density in particular, to Eulerian distribution fields. In this approach, the domain
of influence of a kernel is linked to the local droplet deformation field, which is provided by the
fully Lagrangian approach (FLA) or generalised fully Lagrangian approach. The advantages of
this approach include its ability to retain the structures (caustics and voids) in the droplet cloud,
computational efficiency when compared to conventional methods based on counting droplets,
for example Cloud-In-Cell, and flexibility to be applied to polydisperse droplets. The proposed
methodology has been implemented as additional libraries for the open-source computational
fluid dynamics software OpenFOAM, and applied to benchmark steady state and transient flow
around a cylinder. The results are in agreement with previously reported observations. It
is demonstrated that the new method achieves significant reduction in computational costs if
compared with the Cloud-In-Cell approach, this is due to ∼ 103 times fewer droplet data being
required to reconstruct the droplet fields.
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Introduction
Gas-droplet flows are widely observed in engineering and environmental settings [1], including
during fuel injection in internal combustion engines [2]. In such flows, the admixture forms high
concentration regions with folds (local zones of crossing particle/droplet trajectories, hereafter
referred to as droplets) and caustics. The fully Lagrangian approach (FLA) has been known
for its potential to capture such complex structures in gas-droplet flows while providing number
density values in Lagrangian droplet positions [3, 4]. Moreover, it has been demonstrated
that the FLA is an efficient method for calculating droplet distributions in comparison to other
Lagrangian approaches [4]. In [5], a generalised FLA (gFLA) was applied to polydisperse
evaporating sprays. At the edge of a local region of crossing particle trajectories (caustics),
the particle number density has a singularity. This is a well-known feature of the mathematical
model of the collisionless continuum of point particles (see details in [6], where typical examples
of flows with singularities in the particle number density field were analysed). It was shown that
for an integrable singularity of particle number density, at the singular points the mean distance
between the particles remains finite and the model of collisionless particles remains valid. The
goal of the present study is to develop a robust remapping method for droplet parameters onto
an Eulerian field, especially for the droplet number density calculated using the FLA or gFLA.
The paper is arranged as follows, Section 1 is dedicated to the description of the FLA and gFLA,
kernel regression and its implementation are presented in Section 2, Section 3 is dedicated to
discussion and results, finally the study outcomes are summarised in Conclusions (Section 4).

The fully Lagrangian approach for droplet distribution calculations
In this section, only mathematical formalism for admixture in gas-droplet flow is presented as
this is the focus of the study. The carrier phase is described using a conventional approach
such as a numerical solution to the Navier–Stokes equations.
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The governing equations and corresponding initial conditions for droplet motion and evaporation
are:

ẍd(t) = f(xd(t),vd(t), rd(t), t),
xd(t0) = x0,
ẋd(t0) = v0,

(1a)

ṙd(t) = φ(xd(t),vd(t), rd(t), t), rd(t0) = r0, (1b)

where f is the force per unit mass exerted on a droplet, which is usually a known function of the
droplet size, droplet velocity, and other parameters; ṙd = φ is the rate of droplet size change,
which is usually a known function of the droplet size and thermodynamic parameters, and the
subscript d denotes droplet parameters.
According to the fully Lagrangian approach, the droplet cloud is represented as a continuum
with continuous parameters. The Lagrangian variables are the droplet initial position coordi-
nates x0, which together with time t define the droplet current location. Extending the set of
the Lagrangian variables to include the initial size r0 makes it possible to describe polydisperse
and evaporating droplets [3, 5]. The droplet distribution function p(xd, rd, t) can be found from
the Lagrangian form of the continuity equation

p(xd, rd, t) =
p(x0, r0, t0)

|det(J(x0, r0, t))|
, (2)

where the Jacobian tensor J(x0, r0, t) is defined by

J(x0, r0, t) =

[
Jxx Jxr

Jrx Jrr

]
=

[
∂xd
∂x0

∂xd
∂r0

∂rd
∂x0

∂rd
∂r0

]
. (3)

The equations for the Jacobian components are obtained by taking partial derivatives of Eqs. (1)
with respect to the Lagrangian variables

J̈xx =
∂fd
∂x

· Jxx +
∂fd
∂v

· J̇xx +
∂fd
∂r

Jrx,
Jxx(x0, r0, t0) = I,

J̇xx(x0, r0, t0) = ∂v0/∂x0,
(4a)

J̈xr =
∂fd
∂x

· Jxr +
∂fd
∂v

· J̇xr +
∂fd
∂r

Jrr,
Jxr(x0, r0, t0) = 0,

J̇xr(x0, r0, t0) = 0,
(4b)

J̇rx =
∂φd

∂x
· Jxx +

∂φd

∂v
· J̇xx +

∂φd

∂r
Jrx, Jrx(x0, r0, t0) = 0, (4c)

J̇rr =
∂φd

∂x
· Jxr +

∂φd

∂v
· J̇xr +

∂φd

∂r
Jrr, Jrr(x0, r0, t0) = 1, (4d)

where I is the identity matrix. The initial conditions for the system (4) are found from the initial
conditions associated with the governing equations (1).
In the case of monodisperse droplets (standard FLA), the probability density p(xd, rd, t) reduces
to the number density n(xd, t), which is a function of droplet position xd only.

Kernel regression in application to reconstruction of the droplet number density field
The FLA described in the previous section is used to calculate the droplet parameters, droplet
number density values in particular, along trajectories (in Lagrangian coordinates). This data is
then required to be remapped onto an Eulerian field. We propose to use kernel regression for
droplet data interpolation due to the flexibility of this approach. There is no limit on the minimal
number of data points needed (one is suffice), and it can be extended to the case of multivalued
droplet parameter fields and the case of polydisperse droplets. In our study, we consider the
Nadaraya-Watson estimator [7]

n(x, t) =

∑N
i=1KH(x,xi

d)n(x
i
d, t)∑N

j=1KH(x,xj
d)

, (5)
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where n(xi
d, t) is the instantaneous number density along the trajectory xi

d associated with the
ith droplet at time t as obtained from the FLA, n(x, t) is the Eulerian number density field, N is
the number of droplets that contribute at the point x, and KH(x,xi

d) is the kernel. A multivariate
Gaussian form is chosen in this work, and a corresponding kernel can be defined as

KH(x,xi
d) =

1√
det(H)

exp

[
−1

2

(
x− xi

d

)⊤ ·H−1 ·
(
x− xi

d

)]
, (6)

where H is the bandwidth matrix that contains information about the smoothing lengths in
different directions, e.g. H = h2I corresponds to a spherical kernel with a smoothing length h.
In the case of polydisperse droplets, which includes the behaviour of the droplet radius rd, the
bandwidth matrix H is defined as

H(x0, r0, t) =

[
h2x0|Jxx(x0, r0, t)|2/nI 0

0 h2r0|Jrr(x0, r0, t)|2
]

(7)

where hx0 and hr0 are the initial smoothing lengths in physical and radial space respectively,
and n is the spatial dimensionality of the problem. This form of the bandwidth matrix takes
into account information about local deformation in the droplet phase by including the Jacobian
blocks.

Results and Discussion
The developed approach of combined gFLA and kernel regression has been implemented in
an open-source CFD code OpenFOAM as additional libraries. In this section we discuss 2D
steady-state and periodic gas-droplet flows around a cylinder with mono- and polydisperse
droplets. The gas (carrier phase) parameters are calculated using the OpenFOAM pimpleFoam
solver, whereas the droplet parameters are reconstructed using the newly implemented library.
For the purposes of verification of the implementation and testing the functionality, we limit
our study to Stokes’s drag law, neglecting other forces and assuming low droplet Reynolds
numbers. Also, it is assumed that droplets evaporate into their own vapour and all heat at the
droplet surface is spent on its evaporation. These assumptions lead to simplified expressions
for the force f and evaporation rate φ used in Eq. (1). The above assumptions on physical
models can be relaxed by replacing expressions for f and φ by the ones corresponding to more
realistic flow scenarios.
We start our analysis with a steady-state flow of gas with monodisperse droplets. Three cases
have been considered, St = 0.1, 1, 10, representing small, medium-size, and large droplets.
The number density distributions for the three cases are presented in Fig 1, left column. The
results obtained using the combined FLA and kernel regression approach are compared with
conventional Cloud-In-Cell approach (see Fig 1, middle column), and the relative error is pre-
sented in Fig 1, right column. The error values are acceptable in the most of the domain,
and are high on the edges of two-phase regions behind the cylinder, where areas devoid of
droplets are formed. This discrepancy is attributable to the following two factors. Firstly, kernel
regression smooths sharp gradients over the support area. Secondly, the Cloud-In-Cell (CIC)
approach requires about 100 times more droplet trajectories and 10 times more sampling data
along the trajectories than the proposed combined FLA and kernel regression method. This
leads to extra data used in the CIC approach, which is not accounted for in the combined FLA
and kernel regression method. Overall, the CIC approach requires about 1000 times more
droplet data, which significantly increases the computational time and storage required..
The results for polydisperse droplets in periodic flow around a cylinder are shown in Fig 2.
Since the approach makes it possible to reconstruct the droplet distribution field, apart from the
number density across all droplet sizes, the average droplet size, variance in sizes, and other
higher order statistics can also be calculated. The results presented in the figure demonstrate
that the proposed approach correctly represents the thin droplet accumulation structures, as
well as brings an insight into droplet size (re-)distributions in the flow.
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Figure 1. Reconstruction of droplet number density n(x, y) using kernel regression in monodisperse steady-state flow around a
cylinder at Re = 20 for St = 0.1 (top row); St = 1 (middle row); and St = 10 (bottom row). Second column: the same but
obtained using the Cloud-In-Cell (CIC) approach. Third column: relative difference between the combined FLA and kernel

regression method and the CIC approach.

Figure 2. Reconstruction of the droplet number density n(x, y) across all droplet sizes (top); average droplet size distribution
(middle); and variance in droplet size (bottom) for polydisperse transient flow around a cylinder at Re = 100.

Conclusions
In this study, we propose a novel approach for reconstruction of droplet parameter fields cal-
culated using the fully Lagrangian approach on an Eulerian grid. The focus of the study is on
reconstruction of number density distributions and distributions in size. This approach is based
on kernel regression and is linked to the salient FLA property of tracking the droplet field defor-
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mation. This information is used to inform the size and the shape of the kernel support. The
model has been coupled with OpenFOAM and applied to steady-state and transient flow around
a cylinder, for the cases of mono- and polydisperse droplets. It has been demonstrated that
the new approach might lead to significant savings in computational resources when compared
with the conventional Cloud-In-Cell approach. The new approach supports reconstruction of
useful statistics, for example average droplet size and variance in sizes, which are used in
experimental observations.
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Nomenclature
CIC Cloud-In-Cell
f force per unit mass
FLA fully Lagrangian approach (also known as Osiptsov’s method) [3]
H bandwidth matrix
h smoothing length
I identity matrix
J, J Jacobian tensor and Jacobian components
K kernel
m mass of a particle/droplet
N number of droplets that contribute at the point x
n particle/droplet number density or spatial dimensionality of the problem (1D, 2D or 3D)
p droplet distribution function
t time
v = (vx, vy, vz) velocity
r droplet radius
x = (x, y, z) position vector
Subscripts
d dispersed phase parameter
i, j indices
0 initial value
Superscripts
i index
x index corresponding to the space variables
r index corresponding to the droplet radius
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