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Abstract
Super-resolution tools have been originally invented for image super-resolution but are also
increasingly used for improving scientific simulations or data-storage. Examples range from
cosmology to urban prediction. One particular network framework, physics-informed enhanced
super-resolution generative adversarial networks (PIESRGANs), has been shown to be a pow-
erful tool for subfilter modeling. This work extends large-eddy simulation (LES) subfilter mod-
elling with PIESRGAN for turbulence to interfacial flows. For that, a database of temporal jets
is employed and used for training of the network. A priori and a posteriori results are pre-
sented. It is shown that the PIESRGAN modeling approach gives highly accurate results and
even predicts droplet dynamics on coarse meshes correctly.

Keywords
Super-Resolution, Interfacial Flow, Large-Eddy Simulation.

Introduction
Many industrial flows feature multiple phases, such as one liquid and one gaseous phase, call
interfacial flows. The computation of liquid/gas systems is numerically challenging for multiple
reasons. One reason is the density ratio, which leads to problematic mass conservation errors
if the interface between both phases is not accurately predicted. Therefore, interface tracking
and capturing approaches have been developed for many years. Prominent examples are level
set (LS) and volume of fluid (VoF) or combined approaches. While LS is known to accurately
predict the interface geometry, VoF gives good results with respect to mass conservation.
One known issue of LS/VoF is the mesh dependency, i. e., the breakup of the liquid phase is
typically slower on coarser meshes. This is especially a problem in simulations of complex
systems, for which usually not all areas can be resolved sufficiently. One way to deal with
underresolved simulations is large-eddy simulation (LES), originally developed to accurately
model the effect of turbulence. A filter is used to decouple the larger and small flow scales,
equations are only solved for the larger flow scales, and subfilter models are used to estimate
the effect of the small flow scales on the larger flow scales. This assumes that turbulence is
universal on the small scales, which is often a good assumption.
A similar approach is used in this work for interfacial flow. The unclosed terms in the trans-
port equations for LS and VoF are closed by an AI super-resolution technique, called physics-
informed enhanced super-resolution generative adversarial network (PIESRGAN) [1, 2, 3, 4].
This data-driven approach is trained with coupled LS/VoF data, and it is shown that it is able to
accurately predict the droplet dynamics on coarser meshes.

Data
Direct numerical simulations (DNSs) of a temporal jet configuration were used to study mod-
eling of interface-driven effects in two-phase flows in this work. All jets have a bulk Reynolds
number (Re) of 5000 and a viscosity ratio (VR) of 40. The Weber number (We) and the den-
sity ratio (DR) vary by a factor of 20 between realizations in order to study the sensitivity of the
interface with respect to these parameters. As larger Weber numbers require higher spatial res-
olution, up to about eight billion cells were used for the largest DNS. All DNSs were performed
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using an in-house code, which solves the incompressible Navier-Stokes equations along with
multiphysics effects with structured finite differences of arbitrary order. For prediction of the
interface, a 3-D unsplit coupled level set/volume of fluid (3DU-CLSVOF) scheme consider-
ing surface tension [5] and a second-order accurate, monotonicity preserving Lagrange-remap
solver [6] were used.

Methods
PIESRGAN [7] uses a GAN, which is trained with subboxes of DNS data to minimize a target
loss function. The loss function is given as

L = β1Ladversarial + β2Lpixel + β3Lgradient + β4Lphysics, (1)

where β1 to β4 are coefficients weighting the different loss term contributions with
∑
i

βi =

1. The adversarial loss is the discriminator/generator relativistic adversarial loss [8], which
measures both how well the generator is able to create accurate reconstructed data compared
to the fully resolved data and how well the discriminator is able to identify fake data. The pixel
loss and the gradient loss are defined using the mean-squared error (MSE) of the quantity and
its gradient, respectively. The physics loss enforces physically motivated conditions, such as
the conservation of mass as well as the velocity and pressure conditions at the interface.
The network architecture is sketched in Fig. 1. The generator heavily uses 3-D CNN layers
(Conv3D) [9] combined with leaky rectified linear unit (LeakyReLU) layers for activation [10].
The residual in residual dense block (RRDB), which was introduced for ESRGAN, is essential
for the performance of state-of-the-art super-resolution. It replaced the residual block (RB)
employed in previous architectures and contains fundamental architectural elements such as
residual dense blocks (RDBs) with skip-connections. A residual scaling factor βRSF helps to
avoid instabilities in the forward and backward propagation. RDBs use dense connections
inside. The output from each layer within the dense block (DB) is sent to all the following layers.
The discriminator network is simpler. It inherits basic CNN layers (Conv3D) combined with
LeakyReLU layers for activation with and without batch normalization (BN). The final layers
contain a fully connected layer with LeakyReLU and dropout with dropout factor βdropout.

Figure 1. Sketch of PIESRGAN. "H" denotes high-fidelity data, such as DNS data, "F" are corresponding filtered data, and "R"
are the reconstructed data. The components are: Conv3D - 3D Convolutional Layer, LeakyReLU - Activation Function, DB -

Dense Block, RDB - Residual Dense Block, RRDB - Residual in Residual Dense Block, βRSF - Residual Scaling Factor, BN -
Batch Normalization, Dense - Fully Connected Layer, Dropout - Regularization Component, βdropout - Dropout Factor. Image

from [11].

The solution algorithm in every time step starting with the LES solution Φn
LES at time step n

reads:

1. Use the PIESRGAN to reconstruct Φn
R from Φn

LES.

2. Use Φn
R to estimate the unclosed terms Ψn

LES in the LES equations of Φ by evaluating the
local terms with Φn

R and applying a filter operator.

3. Use Ψn
LES and Φn

LES to advance the LES equations of Φ to Φn+1
LES.
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Results and Discussion
To show the quality of the developed method, the temporally evolving planar jet setup is used,
which was also used for training. A priori and a posteriori results are presented.

A priori
The a priori test uses data at one time step, filters the data, and reconstructs the data with
PIESRGAN. The filtered mesh, which was chosen, used half of the cells per direction compared
to the DNS mesh. The results are shown in Fig. 2. The visual agreement is very good.

DNS

PIESRGAN

Figure 2. A priori results for the VoF field shown for DNS and reconstructed data.

A posteriori
The droplet, which is formed and already visible in the a priori visualization, is tracked over
time with DNS and LES with a coarser mesh. The result is shown in Fig. 3. Again, the visual
agreement is very good. Without model, the breakup on the coarser mesh would be slower.

Conclusions
This short paper introduces PIESRGAN for interfacial flow. The method is explained and
demonstrated by means of a temporally evolving planar jet. The prediction accuracy of PIESRGAN
is very good, and it is able to eliminate mesh dependency of breakup simulations.
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Figure 3. A prosteriori results for the VoF field shown for DNS and LES.
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